On the Computational Complexity of MCMC-based Estimators in Large Samples
نویسندگان
چکیده
In this paper we examine the implications of the statistical large sample theory for the computational complexity of Bayesian and quasi-Bayesian estimation carried out using Metropolis random walks. Our analysis is motivated by the Laplace-Bernstein-Von Mises central limit theorem, which states that in large samples the posterior or quasi-posterior approaches a normal density. Using the conditions required for the central limit theorem to hold, we establish polynomial bounds on the computational complexity of general Metropolis random walks methods in large samples. Our analysis covers cases where the underlying log-likelihood or extremum criterion function is possibly non-concave, discontinuous, and with increasing parameter dimension. However, the central limit theorem restricts the deviations from continuity and log-concavity of the log-likelihood or extremum criterion function in a very specific manner. Under minimal assumptions required for the central limit theorem to hold under the increasing parameter dimension, we show that the Metropolis algorithm is theoretically efficient even for the canonical Gaussian walk which is studied in detail. Specifically, we show that the running time of the algorithm in large samples is bounded in probability by a polynomial in the parameter dimension d, and, in particular, is of stochastic order d in the leading cases after the burnin period. We then give applications to exponential families, curved exponential families, and Z-estimation of increasing dimension.
منابع مشابه
Spatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کاملIncreasing the Performance of OFDM Systems by PAPR Reduction in PTS Technique using Election Optimization Algorithm
Orthogonal Frequency Division Multiplexing (OFDM) is a useful technology in wireless communications that provides high-rate data transmission in multipath fading channels. The advantages of OFDM systems are the high spectral efficiency and strong resistance to frequency selective fading. In OFDM systems, a large number of sub-carriers are used to modulate the symbols causing the time-domain OFD...
متن کاملEfficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains
Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We discuss Bayesian decoding methods based on an encoding generalized linear model (GLM) that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The form of the GLM likelihood ensures that the post...
متن کاملComputational Complexity of MCMC Sampling under the CLT Framework
This paper studies the computational complexity of Bayesian and quasi-Bayesian estimation in large samples carried out using a basic Metropolis random walk. Our framework covers cases where the underlying likelihood or extremum criterion function is possibly nonconcave, discontinuous, and of increasing dimension, but the posterior or quasi-posterior based on it approaches a normal density in la...
متن کاملThe Ratio-type Estimators of Variance with Minimum Average Square Error
The ratio-type estimators have been introduced for estimating the mean and total population, but in recent years based on the ratio methods several estimators for population variance have been proposed. In this paper two families of estimators have been suggested and their approximation mean square error (MSE) have been developed. In addition, the efficiency of these variance estimators are com...
متن کامل